gpu服务器配置和报价(GPU计算服务器)
十到二十万左右深度学习服务器推荐怎样的配置?
做深度学习的话,我还是可以有立场说些的。因为我们实验室当时就遇到了这些问题,选择深度学习GPU显卡时建议选择专门做液冷的A100或者RTX3090、RTXA6000、RTXA40等卡,蓝海大脑的液冷GPU服务器具有高性能,高密度⌄扩展性强等特点。液冷GPU服务器产品支持1~20块 GPU卡,还可以选择,毕竟能可以选择也是很好的,芯片主要采用龙芯、飞腾、申威、海光、英伟达、Intel、AMD。完全定制啊,敲开心。适用于深度学习训练及推理、生命科学、医药研发、虚拟仿真等场景,覆盖服务器、静音工作站、数据中心等多种产品形态,量身定制,满足客户全场景需求。技术人员给的建议都非常受用。
(使用浏览器扫码进入在线客服窗口)
复制联系方式
各厂商GPU服务器的配置和报价怎么对比?
首先你心里要有几个服务商想要做对比,再对你想要的服务器规格、价格、服务等各方面进行对比。其实GPU服务器的配置不同、性能不同,价格自然不一样,你可以先在网上选择下适合自己的服务器类型和配置,然后再去对比价格。像我们公司现在用的服务器就是思腾合力家的,他们家在京东上也店铺,你也可以去店铺上看看服务器类型和价格,思腾合力不仅有自主研发的服务器,而且还是英伟达的经销商,在价格方面可以给你做个对比看看。望采纳我的答案,不胜感激。如果还有什么需要,可以追问,谢谢!
GPU服务器的配置和报价怎么看?
CPU:
首先确认您的模型是否需要CPU的计算力
深度学习训练,4GPU主流配置10核CPU,8GPU建议配置12核以上
内存:
显存的总和再加32G基本能满足需求(如4卡3090显存总和为96G,加32G等于128G)
硬盘:
机械盘不能满足大部分模型数据读取,推荐480G SSD做为系统盘,热数据用SSD存储,冷数据用机械盘
GPU:
Geforce系列可用于深度学习,Tesla系列 深度学习 高性能计算,Quadro系列绘图渲染
选择GPU服务器的配置不同、性能不同,价格自然不一样,你可以去官网了解一下
最新RTX4090深度学习GPU服务器配置大全有吗?
产品类型 4U机架式
1 CPU 金牌6326 16核心32线程 基频2.9GHZ 加速频率3.5GHZ TDP: 185W 2
2 内存 512G(32GB*32) DDR4 3200MHZ 1
4 准系统 超微420GP-TNR 4U机架式准系统, 带2200W冗余2+2电源;平台最大支持lO个GPU
32个DIMM插槽;母板超级X12DPG-OA6处理器中央处理器双插槽 P+ (LGA-4189)第三代英特尔 至强 可扩展处理器支持CPU TDP 270W核心高达40C/80T;高达 60MB 的缓存图形处理器支持的GPUHGX A100 8-GPU 40GB/80GB SXM4 多 GPU 1
5 SSD 三星PM9A1 1TB M.2接口 NVMe协议 四通道 PCIe4.0 固态硬盘 1
6 SATA 希捷(Seagate)银河系列V6 6TB ST6000NM021A 7200RPM 256MB SATA3企业级硬盘 1
7 GPU卡 英伟达RTX 4090公版 4